Abstract

Structured catalyst has been developed for C–C triple bond three-phase hydrogenation. The sintered metal fiber (SMF) coated by different oxides served as support for monodispersed Pd nanoparticles (6.4 ± 0.5 nm). The effect of acid–base properties and reducibility of metal oxide coating on catalytic performance in the liquid phase (T = 303–348 K; P = 1–20 bar) hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol (B2) has been studied. The oxides MgO, ZnO, Ga2O3, Al2O3, ZrO2, SnO2, and SiO2 and the mixtures of MgO + ZnO + Al2O3, MgO + Al2O3, and ZnO + Al2O3 were tested. The catalyst activity was higher up to 10-fold for Pd0 on acidic supports, like SiO2, but demonstrated lower selectivity to B2 as compared to the basic oxides. The highest yield (∼99%) of the target B2 and stability over four consecutive runs were attained over the 0.2% Pd0/ZnO/SMF catalyst. The high selectivity to B2 was attributed to the formation of an active phase containing intermetallic PdZn alloy as confirmed by XPS. The reaction ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.