Abstract

Monocrystalline copper(II) oxide nanoparticles were made by scalable flame spray pyrolysis (FSP) and analyzed by X-ray diffraction (XRD), nitrogen adsorption (BET), transmission electron microscopy (TEM) and X-ray absorption near edge structure (XANES). Their primary particle diameter was closely controlled from 6 to 50 nm by varying the FSP conditions. Their electrochemical performance as Li-ion battery materials was tested in composite electrodes vs. Li-metal. Near theoretical specific charges were obtained for intermediate CuO sizes of 20 and 50 nm (dBET). In contrast, larger, commercially available CuO (dBET = 670 nm) exhibited significantly lower practical specific charge due to incomplete oxidation in the delithiation cycle as indicated by the remaining Cu and Cu2O by XRD and XANES analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.