Abstract

ObjectivePorous materials, especially porous silica particles are of great interest in different areas, and have applied in dental composites as inorganic fillers, due to their potential in constructing micromechanical interlocking at the filler-resin matrix interfaces. However, the facile and precise synthesis of hierarchical porous silica with graded sizes is still a great challenge. MethodsHere, we synthesized dendritic porous silica (DPS) with center-radial hierarchical pores and controllable size ranging from 75 to 1000nm by varying simultaneously the amounts of silica precursor and template in the microemulsion. A plausible nucleation-growth mechanism for the structural formation and the size tunability of the DPS particles was further put forward. These DPS particles were then formulated with Bis-GMA/TEGDMA resin. ResultsThe particle size and morphology influenced the mechanical properties of dental composites. Particularly, DPS-500 particles (average size: 500nm) exhibited the superior reinforcing effect, giving large improvements of 32.0, 96.7, 51.9, and 225.6% for flexural strength (SF), flexural modulus (EY), compressive strength (SC), and work of fracture (WOF), respectively, over the DPS-75 filled composite. All DPS filler sized exhibited similar degree of conversions and curing depths. Furthermore, the DPS-500 filled composite presented better cytocompatibility than commercial Z250 XT. SignificanceThe facile synthesis of DPS particles developed here and the understanding of the influence of the filler size and morphology on the composite properties provide a shortcut to design porous silica with precise size control and dental composites with superior performance. These DPS particles could also have promising applications in biomedicine, catalysis, adsorption, and cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.