Abstract

Carbon xerogel spheres co-doped with nitrogen and eco-graphene were synthesized using a typical solvothermal method. The results indicate that the incorporation of eco-graphene enhances the electrochemical properties, such as the current density (JK) and the selectivity for the four transferred electrons (n). Additionally, nitrogen doping has a significant effect on the degradation efficiency, varying with the size of the carbon xerogel spheres, which could be attributed to the type of nitrogenous group doped in the carbon material. The degradation efficiency improved in the nanometric spheres (48.3% to 61.6%) but decreased in the micrometric-scale spheres (58.6% to 53.4%). This effect was attributed to the N-functional groups present in each sample, with N-CNS-5 exhibiting a higher percentage of graphitic nitrogen (35.7%) compared to N-CMS-5 (15.3%). These findings highlight the critical role of sphere size in determining the type of N-functional groups present in the sample. leading to enhanced degradation of pollutants as a result of the electro-Fenton process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.