Abstract

The purpose of the present research is to investigate the aerodynamic characteristics of evaporating droplet near the burner where flame is hold by the recirculating flow and to characterize droplet aerodynamic response regarding follow or penetration and turbulent interaction with the surrounding air by classifing droplets. Aerodynamic characteristics of combusting spray were measured in a small industrial oil furnace by a phase Doppler anemometer. The size-classified technique was used together with the relative Reynolds number and the recombined two dimensional size-classified droplet velocity. The results show that the two dimensional behavior of a spray flame can be represeated, The size-classified droplet technique can provide very useful information on droplet aerodynamics and dispersion. The follow/penetration characteristics of spray can be understood very well in consideration of the features of classified droplet in combustion condition. Larger droplets had a large mass and inertia, and thus could penetrate through the recirculation flow region. Consequently larger droplets form large luminous flame. On the other hand, smaller droplets were entrained by the turbulent air flow and played a role of flame-holder. In addition, the interaction between fuel droplets and air flow is a process that significantly affects flame holding mechanism of spray flames

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.