Abstract

Some general formulae are obtained for size-biased sampling from a Poisson point process in an abstract space where the size of a point is defined by an arbitrary strictly positive function. These formulae explain why in certain cases (gamma and stable) the size-biased permutation of the normalized jumps of a subordinator can be represented by a stickbreaking (residual allocation) scheme defined by independent beta random variables. An application is made to length biased sampling of excursions of a Markov process away from a recurrent point of its statespace, with emphasis on the Brownian and Bessel cases when the associated inverse local time is a stable subordinator. Results in this case are linked to generalizations of the arcsine law for the fraction of time spent positive by Brownian motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.