Abstract
The component materials of controlled-release drug delivery systems are often selected based on their degradation rates. The release time of a drug from a system will strongly depend on the degradation rates of the component polymers. We have observed that some poly(lactic-co-glycolic acid) polymers (PLGA) exhibit degradation rates that depend on the size of the polymer object and the temperature of the surrounding environment. In vitro degradation studies of four different PLGA polymers showed that 150μm thick membranes degraded more rapidly than 50μm thick membranes, as characterized by gel permeation chromatography and mass loss measurements. Faster degradation was observed at 37°C than 25°C, and when the saline media was not refreshed. A biodegradable polymeric microreservoir device that we have developed relies on the degradation of polymeric membranes to deliver pulses of molecules from reservoirs on the device. Earlier molecular release was seen from devices having thicker PLGA membranes. Comparison of an in vitro release study from these devices with the degradation study suggests that reservoir membranes rupture and drug release occurs when a membrane threshold molecular weight of 5000–15000 is reached.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.