Abstract

Silicon is recognized as a promising anode material for high-performance lithium ion batteries due to its high theoretical specific capacity and elemental abundance. Challenges related to the low electrical conductivity of Si and large volume changes during the lithiation/delithiation cycles, as well as the low rate of lithium diffusion in silicon anodes, hinder practical applications. To provide fundamental insights into these issues, silicon nanocrystal/graphene aerogel nanocomposites were synthesized by combining undecanoic acid-functionalized silicon nanocrystals of various sizes (SiX-COOH, where X represents the nanocrystal diameter of 3, 5, 8, and 15 nm) with conductive mesoporous graphene aerogels (GAs). The silicon nanocrystals are evenly dispersed throughout the graphene aerogel as shown by energy-dispersive X-ray (EDX) mapping. In terms of electrochemical performance, SiX-COOH/GA nanocomposites demonstrated a clear dependence on the size of the embedded silicon nanocrystals, with the composites ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.