Abstract

γ-Alumina-supported Pt nanoclusters with an average particle size of 0.8 nm, Pt/Al2O3-0.8, act as an effective heterogeneous catalyst for mono-N-alkylation of amines with different amines. To establish a catalyst design concept, systematic studies on the structure–activity relationship are carried out, combined with characterization by Pt L3-edge XAFS (X-ray absorption fine structure), X-ray photoelectron spectroscopy (XPS), and infrared (IR) study of CO adsorption. By changing the particle size of Pt over the size range of 0.8–24 nm, it is demonstrated that the present reaction is a structure-sensitive reaction, demanding coordinatively unsaturated Pt atoms on metallic nanoclusters. The support also affects the activity and electronic state of Pt. The electron density of Pt increases with basicity of the support oxide, and the support with moderate basicity (Al2O3) gives the highest activity probably due to a moderate electron density of Pt. Kinetic studies suggest that the present reaction proceeds through a “hydrogen-borrowing” mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.