Abstract

Size- and structure-dependent efficiency enhancement methods are studied for luminescent solar concentrators (LSCs) fabricated by casting organic laser dyes into PMMA matrixes. The enhancement are achieved mainly by attaching a white diffuser with an airgap at the bottom of the LSC and adding refractive index matched optical gel between the LSC's edges and the attached photovoltaic cells. The size-dependent efficiency enhancement is studied for a single layer by changing the size up to 120 cm. The results show that the enhancement from the white diffuser drops and then tends to plateau at a certain size of LSC. This also applies to multilayer LSCs. Together with optical gel, the efficiency enhancement is higher for multilayer structures than that for single layers. We also demonstrate the optimal length for the design of LSCs due to reabsorption of dyes. These results could be applied to optimize the design of other LSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.