Abstract

Subunit molecular weights of human alkaline phosphatases (orthophosphoric-monoester phosphohydrolases (alkaline optimum), EC 3.1.3.1) determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS) were dependent upon acrylamide concentration, a reflection of their glycoprotein nature. Molecular weights at a concentration of 7% (w/w) or greater were 68300, 80800 and 79400 for the enzymes from placenta, liver and mucosa of small intestine, respectively, All enzymes were dimers, the respective native M r values determined by gradient gel electrophoresis being 138000, 186000 and 180000. None of the molecular weights was altered by desialylation. Stability of the catalytic activity of the purified enzymes to SDS varied and was very dependent on pH. SDS at 1% (w/v) rapidly denatured both native and desialylated alkaline phosphatase from placenta at pH 7.5 but had little effect on these at pH 10.3. Compared with placenta, the native enzyme from liver had greater stability at pH 7.5 and both native and desialylated forms had lower stability at pH 10.3. The enzyme from intestinal mucosa was sharply different from the other two isoenzymes: SDS had little effect at pH 7.5 but very rapidly denatured the enzyme at pH 10.3. The size of alkaline phosphatases and their stability to SDS can be used to identify gene products and to recognize heterodimers formed between products of more than oner gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.