Abstract
Evidence of size-dependent reconstruction in quantum dots leading to changes in bonding is observed through analysis of the (77)Se{(1)H} cross-polarization magic angle spinning and (77)Se spin-echo solid-state NMR for Cd(77)Se quantum dots. The CP-MAS and spin-echo data indicate discrete surface and core (77)Se sites exist with the QD, in which the surface is comprised of numerous reconstructed lattice planes. Due to the nearly 100% enrichment level for (77)Se, efficient spin coupling is observed between the surface (77)Se and sublayer (77)Se sites due to spin diffusion in the Cd(77)Se quantum dots. The observed chemical shift for the discrete (77)Se sites can be correlated to the effective mass approximation via the Ramsey expression, indicating a 1/r(2) size dependence for the change in chemical shift with size, while a plot of chemical shift versus the inverse band gap is linear. The correlation of NMR shift for the discrete sites allows a valence bond theory interpretation of the size-dependent changes in bonding character within the reconstructed QD. The NMR results provide a structural model for the QDs in which global reconstruction occurs below 4 nm in diameter, while an apparent self-limiting reconstruction process occurs above 4 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.