Abstract
Different generation polyphenylene dendrimers possessing eight diphenylacetylene units in the dendritic scaffold between the layers of the first and second generation have been synthesized by using a new p-phenylene ethynylene-functionalized tetraphenylcyclopentadienone branching unit. The heterogeneous hydrogenation of the embedded triple bonds in the final dendrimers was successfully performed via heterogeneous catalysis. Moreover a “softening” effect of the dendritic structure in consequence of the hydrogenation is observed, allowing for the first time the investigation of this effect upon size, shape, and intramolecular voids in the case of similar dendrimer pairs. Quartz microbalance studies revealed that upon hydrogenation the capacity in host uptake is decreased allowing the incorporation of a lower number of guest molecules compared to the parent materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.