Abstract

Rescaling of the geometrical sizes and the value of hydraulic conductivity in the classical problem of steady two-dimensional (2D) potential seepage through a rectangular earth dam with an empty tailwater is shown to result in a mathematically equivalent problem of seawater intrusion with a sharp interface into a confined horizontal aquifer, which discharges fresh groundwater to the sea through a vertical segment of the beach. The shape of the interface, the vertical and horizontal sizes of the static intrusion wedge, and its cross-sectional area are written in an explicit form, using the Polubarinova-Kochina formulas, rectified. The densities of the two liquids and the aquifers’ hydraulic conductivity and thickness, as well as the incident hydraulic gradient serve as input parameters. With reduction of the incident groundwater gradient far upstream from the intrusion zone (due to, e.g., freshwater abstraction by wells), the sizes of the wedge rapidly increase. The analytical solution has been validated with recent sand tank experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.