Abstract

A theoretical model free of any adjustable parameter was derived based on the relation between Gibbs energy change and size to describe the size- and shape-dependent behavior of the melting enthalpy and entropy of nanoparticles. For the melting enthalpy and entropy of vanadium (V), silver (Ag), and copper (Cu) nanoparticles, the results of pure theoretical calculation are in good agreement with available molecular dynamic results. The effect of size on the melting enthalpy and entropy of nanoparticles is greater compared to that of shape effect. The melting enthalpy and entropy decrease with particle size decreasing and the smaller the particle size, the greater the size and shape effects. Furthermore, at the same equivalent diameter, the more the shape of nanoparticles deviates from that of the sphere, the smaller the melting enthalpy and entropy. The thermodynamic relations derived herein can quantitatively describe the influence regularities of size and shape on the melting thermodynamic properties of nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.