Abstract

Theoretical calculations of thermal spin transitions in nanoscale clusters on a surface are presented. The mechanisms for magnetization reversal are identified and the activation energy and pre-exponential factor for the rate are evaluated using a recently developed harmonic transition state theory and a Heisenberg-type Hamiltonian. A maximum is found in the pre-exponential factor as a function of cluster size corresponding to a crossover from a uniform rotation mechanism to temporary domain wall formation. As the islands grow, the energy barrier increases up to a limit where the domain wall is fully established. For larger islands, the minimum energy path becomes flat resulting in a significant recrossing correction to the transition state theory estimate of the rate. The parameters of the Hamiltonian are chosen to mimic Fe clusters on a W(110) surface, a system that has previously been studied extensively in the laboratory and the calculated results are found to be in close agreement with the reported measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.