Abstract

Aluminium castings are known to be prone to micro-porosity formation which appears as fine porosity in the inter-dendritic and inter-granular regions of castings. The size, distribution and morphology of such pores significantly affect mechanical and fatigue properties of castings. We use a cellular automaton simulation model as a virtual experimental set-up to study growth of gas bubbles in solidifying aluminium castings. The model assumes that gas porosity originates from pre-existing micro-bubbles that grow by diffusion of hydrogen from the solid–liquid interfaces into the bubbles. The major factors that limit the growth of the bubbles are the finite time available for the diffusion of hydrogen and the space constraint imposed by the growing solid. While the diffusion limitation to pore growth has been studied well, the effect of the space constraint has not received much attention. Our cellular automaton model with growth rules specially adapted for bubble growth tracks the solid–liquid and bubble–liquid interfaces explicitly on a fine grid. Numerical experiments are performed with a eutectic Al–Si alloy solidified with different grain sizes and solidification rates. The micro-structural environment in which a pre-existing bubble finds itself is seen to be the most critical factor that determines the final size and morphology of porosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call