Abstract

Titanium dioxide (TiO2) nanowires with two different dimensions (i.e., <100 nm and ∼200 nm in diameter) were synthesized and studied under high pressure up to 37 GPa by Raman spectroscopy and synchrotron X-ray diffraction. Direct anatase to baddeleyite phase transitions were observed in both samples upon compression, but with different onset pressures. The observed phase transitions are in contrast to bulk TiO2, where the anatase phase transforms to α-PbO2 phase and then the baddeleyite phase. Compressibility of the anatase and baddeleyite phases was found different than both nanocrystals and the corresponding bulk materials. Our comparative study demonstrated not only that the morphology of TiO2 nanowire substantially influences the high pressure behaviors, but dimensions play a determining role in terms of transformation pressures, phase stability regions, and compressibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call