Abstract

We report size- and distance-dependent surface-energy transfer (SET) properties of gold nanoparticles for recognizing hepatitis C virus (HCV) RNA sequence sensitively and selectively (single-base mutations) in a homogeneous format. We have demonstrated that quenching efficiency increases by three orders of magnitude, as the particle size increases from 5 to 70 nm. Due to this extraordinarily high K(SV), nanoparticle SET (NSET) detection limit can be as low as 300 fM concentration of RNA, depending on the size of gold nanoparticle. We have shown that the distance-dependent quenching efficiency is highly dependent on the particle size and the distance at which the energy-transfer efficiency is 50 %, ranges all the way from 8 nm, which is very close to the accessible distance of conventional Förster resonance energy transfer (FRET), to about 40 nm by choosing gold nanoparticles of different diameters. Our result points out that dipole-to-metal-particle energy transfer and NSET models provide a better description of the distance dependence of the quenching efficiencies for 8 nm gold nanoparticle, but agreement is poor for 40 and 70 nm gold nanoparticles, for which the measured values were always larger than the predicted ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.