Abstract

Spatial selectivity of six-wave radiation converters, which perform double wavefront conjugation of a signal wave in long multimode waveguides with both Kerr and thermal nonlinearities, is studied. Waveguides with infinitely conductive surfaces, with a parabolic refractive index profile, were used. It is shown that the spatial structure of the first pump wave does not affect the quality of doubled wavefront conjugation in a waveguide with Kerr nonlinearity, but only slightly affects the quality of doubled wavefront conjugation in a waveguide with thermal nonlinearity. A decrease in the radius of the second Gaussian pump wave on the back face of the waveguide leads to an improvement in the quality of the doubled wavefront reversal both in the case of six-wave interaction in the Kerr and thermal nonlinearities. In a parabolic waveguide, when the zero mode of the waveguide is excited by pump waves at a constant frequency of the second pump wave, an increase in the frequency of the first pump wave worsens the quality of the double wavefront conjugation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call