Abstract

We report values of the virial coefficients B n of the Lennard-Jones (LJ) model, as computed by the Mayer Sampling Monte Carlo method. For n = 4 and 5, values are reported for 103 temperatures T = 0.62 to 40.0 (in LJ units); for n = 6, 31 values are reported for T = 0.625 to 20.0; for n = 7, 15 values are reported from T = 0.625 to 10; and for n = 8, four values are reported from T = 0.75 to 10. Data are used to estimate the location of the LJ critical point, and the critical temperature estimated this way is given to within 0.8% of the established value, while the critical density is too low by 10%. Data derived from the virial equation of state (VEOS) are compared to pressures and internal energies calculated by Monte Carlo simulation. Simulations of systems ranging from 125 to 30,000 particles are extrapolated to infinite system size, and it is shown that the VEOS–when applied at densities where the series has reached convergence–provides results closer to the infinite-system values than obtained by any of the finite-system simulations. For n = 6, convergence of VEOS (within a 1% tolerance) is obtained for densities up to the spinodal for subcritical temperatures and up to ρ = 0.4 (in LJ units) in the vicinity of the critical temperature; the range of applicability of VEOS increases with temperature, reaching for example densities of 0.65 for T = 5.0 and 0.8 for T = 8.0 when truncated at n = 6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.