Abstract
The construction of symmetric and symplectic exponentially fitted modified Runge–Kutta (RK) methods for the numerical integration of Hamiltonian systems with oscillatory solutions is considered. In a previous paper [H. Van de Vyver, A fourth order symplectic exponentially fitted integrator, Comput. Phys. Comm. 176 (2006) 255–262] a two-stage fourth-order symplectic exponentially fitted modified RK method has been proposed. Here, two three-stage symmetric and symplectic exponentially fitted integrators of Gauss type, either with fixed nodes or variable nodes, are derived. The algebraic order of the new integrators is also analyzed, obtaining that they possess sixth-order as the classical three-stage RK Gauss method. Numerical experiments with some oscillatory problems are presented to show that the new methods are more efficient than other symplectic RK Gauss codes proposed in the scientific literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.