Abstract

First, a nonlinear difference scheme is proposed to solve the three-dimensional (3D) nonlinear wave equation by combining the correction technique of truncation error remainder in time and a sixth-order finite difference operator in space, resulting in fourth-order accuracy in time and sixth-order accuracy in space. Then, the Richardson extrapolation method is applied to improve the temporal accuracy from the fourth-order to the sixth-order. To enhance computational efficiency, a linearized difference scheme is obtained by linear interpolation based on the nonlinear scheme. In addition, the stability of the linearized scheme is proved. Finally, the accuracy, stability and efficiency of the two proposed schemes are tested numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.