Abstract
AbstractPhenology of insect abundance in less seasonal tropical regions is well recognized. Even in Bornean tropical forests in Malaysia, where there is no distinct dry season, there are insect species that behave as if their environments were highly seasonal. How such seasonal dynamics are shaped and what factors determine the seasonality remains largely unresolved. To elucidate the mechanisms underlying population dynamics in relatively stable tropical environments, we classified monthly samples collected with light traps at Lambir Hills National Park, Malaysia, and generated long‐term time‐series data for the family Passalidae (Coleoptera: Scarabaeoidea), which spend nearly their entire life cycle within or beneath decayed wood. Analyses of our data (20 species and 768 individuals) revealed that there were clear abundance peaks in April and October at the community level. We analyzed the data together with climate data using a nonlinear time‐series analysis called convergent cross mapping. The causal relationship between adult population dynamics of the dominant species (Leptaulax planus) and temperature was detected, which shows that the population dynamics of L. planus are driven by cool temperatures approximately 1 month before emergence. Our study indicates that even in perpetually wet tropical rainforests in Southeast Asia, insect population dynamics respond to climatic factors and show seasonal population dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.