Abstract
Exact analytical solutions are good candidates for studying and explaining the dynamics of solitons in nonlinear systems. We further extend the region of existence of spin solitons in the nonlinearity coefficient space for the spin-1 Bose–Einstein condensate. Six types of spin soliton solutions can be obtained, and they exist in different regions. Stability analysis and numerical simulation results indicate that three types of spin solitons are stable against weak noise. The non-integrable properties of the model can induce shape oscillation and increase in speed after the collision between two spin solitons. These results further enrich the soliton family for non-integrable models and can provide theoretical references for experimental studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.