Abstract

AlPO4 belongs to the berlinite quartz homeotype family, which has been the subject of intense high-pressure research triggered by the supposed existence of reversible pressure-induced amorphization. X-ray diffraction experiments, complemented with ab initio calculations, demonstrate the existence of two high-pressure crystalline polymorphs and show that AlPO4 shares the same two-stage densification mechanism as silica. In the first step, a compact hexagonal sublattice of oxygen atoms is formed. In the second step, the cations redistribute in the interstices giving rise to a monoclinic distorted CaCl2 phase. The most outstanding feature of the phase is that phosphorous becomes six-fold coordinated by oxygen, adopting a configuration unknown so far in solid-state science. This finding opens possibilities in the high-pressure chemistry of phosphorus. The close relationship of AlPO4 with silica suggests the existence of completely unexplored families of compounds analogous to those of six-fold-coordinated silicates but based on PO6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.