Abstract
The 6D time-dependent wave packet calculations were performed to explore H2 dissociation on Ag, Au, and two AgAu alloy surfaces, using four newly fitted potential energy surfaces based on the neural network fitting to density functional theory energy points. The ligand effect resulting from the Ag-Au interaction causes a reduction in the barrier height for H2+Ag/Au(111) compared to H2+Ag(111). However, the scenario is reversed for H2+Au/Ag(111) and H2+Au(111). The 6D dissociation probabilities of H2 on Ag/Au(111) surfaces are significantly higher than those on the pure Ag(111) surface, but the corresponding results for H2 on Au/Ag(111) surfaces are substantially lower than those on the pure Au(111) surface. The reactivity of H2 on Au(111) is larger than that on Ag(111), despite Ag(111) having a slightly lower static barrier height. This can be attributed to the exceptionally small dissociation probabilities at the hcp and fcc regions, which are at least 100 times smaller compared to those at the bridge or top site for H2+Ag(111). Due to the late barrier being more pronounced, the vibrational excitation of H2 on Ag(111) is more effective in promoting the reaction than on Au(111). Moreover, a high degree of alignment dependence is detected for the four reactions, where the H2 dissociation has the highest probability at the helicopter alignment, as opposed to the cartwheel alignment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.