Abstract
This paper for the first time investigates the six-dimensional compliance characteristics of orthoplanar springs using a compliance-matrix based approach, and validates them with both finite element (FEM) simulation and experiments. The compliance matrix is developed by treating an orthoplanar spring as a parallel mechanism and is revealed to be diagonal. As a consequence, corresponding diagonal compliance elements are evaluated and analyzed in forms of their ratios, revealing that an orthoplanar spring not only has a large linear out-of-plane compliance but also has a large rotational bending compliance. Both FEM simulation and experiments were then conducted to validate the developed compliance matrix. In the FEM simulation, a total number of 30 types of planar-spring models were examined, followed by experiments that examined the typical side-type and radial-type planar springs, presenting a good agreement between the experiment results and analytical models. Further a planar-spring based continuum manipulator was developed to demonstrate the large-bending capability of its planar-spring modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.