Abstract

The purpose of this study was to measure the three-dimensional movements of the femur, tibia and patella in healthy young people during activities of daily living. A mobile biplane X-ray imaging system was used to obtain simultaneous measurements of six-degree-of-freedom (6-DOF) tibiofemoral and patellofemoral kinematics and femoral condylar motion in ten participants during standing, level walking, downhill walking, stair ascent, stair descent and open-chain (non-weightbearing) knee flexion. Seven of the eleven secondary motions at the knee-three translations at the tibiofemoral joint, three translations at the patellofemoral joint, and patellar flexion-were coupled to the tibiofemoral flexion angle (r2 ≥ 0.71). Tibial internal-external rotation, tibial abduction-adduction, patellar rotation, and patellar tilt were each weakly related to the tibiofemoral flexion angle (r2 ≤ 0.45). The displacements of the femoral condyles were also coupled to the tibiofemoral flexion angle (r2 ≥ 0.70), with the lateral condyle translating further on the tibial plateau than the medial condyle. The center of rotation of the tibiofemoral joint in the transverse plane was located on the medial side in all activities. These findings expand our understanding of the kinematic function of the healthy knee and may be relevant to a range of applications in biomechanics, including the design of prosthetic knee implants and the development of knee models for use in full-body simulations of movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.