Abstract

In the archetypal monolayer semiconductor WSe_{2}, the distinct ordering of spin-polarized valleys (low-energy pockets) in the conduction band allows for studies of not only simple neutral excitons and charged excitons (i.e., trions), but also more complex many-body states that are predicted at higher electron densities. We discuss magneto-optical measurements of electron-rich WSe_{2} monolayers and interpret the spectral lines that emerge at high electron doping as optical transitions of six-body exciton states ("hexcitons") and eight-body exciton states ("oxcitons"). These many-body states emerge when a photoexcited electron-hole pair interacts simultaneously with multiple Fermi seas, each having distinguishable spin and valley quantum numbers. In addition, we explain the relations between dark trions and satellite optical transitions of hexcitons in the photoluminescence spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call