Abstract
This paper describes design and experimental results for the future airborne multispectral sensor with six bands between visible and infrared regions. The multispectral sensor features single optics using off-axis three-mirror reflective optics to provide same field of views for all six bands and dichroic mirrors to separate the spectral range into six bands. The off-axis three-mirror optics provides an obstruction free FOV with a wide spectral range and high spatial resolution over a wide FOV. The six bands consist of three visible bands, a near infrared band, an MWIR band and an LWIR band. The 10,000 element CCD sensors are used for the three visible bands and the near infrared band. The 960 element HgCdTe linear arrays are used for the MWIR and the LWIR bands. The results of experiments reveal that the ground-base multispectral sensor has a wide spectral range from 0.4 ^m to 10 xm, the wide FOV over 5.7° and the high spatial resolutions of less than 10 xrad for visible and near infrared bands and of less than 104 xrad for the MWIR and the LWIR bands. The overall MTF at the center of the FOV is more than 0.3 at Nyquist frequency for all bands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.