Abstract

Six-axis force/torque sensors are transducers capable of measuring three dimensions of force and three dimensions of torque, and have a wide range of applications in robotic systems. The sensing principle behind the greatest majority of these is based on detecting strains in an elastic structure, and there are multiple modalities for strain measurement, including resistive strain gauge, piezoelectric, capacitive, and optoelectronic techniques. Developed sensors can be evaluated based on a range of parameters, including decoupling error, nonlinearity error, and measurement isotropy, where the primary design challenge is to maximise the allowable sensing range while minimising measurement errors. This literature review describes the state of the art of the field, and includes all relevant research associated with the search term “six-axis force/torque sensor” spanning 2015 - June 2021. The published literature for each sensing technique is summarised and evaluated, and a generalised sensor selection framework is proposed to assist the reader with the selection procedure for a state of the art sensor. In the period considered, there have been no significant improvements with the sensors documented in terms of measurement errors. Researchers have instead focused on features such as fault tolerance, alternative sensing techniques, cost reduction, and miniaturisation. These trends are expected to continue, and moving forward, the most significant challenge in the field is expected to be the lowering of manufacturing costs, as trends indicate measurement performance has reached maturity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call