Abstract

AbstractThe different means currently available for six‐axis wrist force sensor evaluation are discussed, and a unified criteria is proposed that is based on the condition number, the overall static and dynamic stiffness of the sensor, and the strain gauge sensitivity. In this light a new frame/truss type of sensor body design is introduced. The uniqueness of the design lies in the elastic members that exhibit truss (axial deformation), as opposed to the commonly used beam (bending) behavior. Several improvements over previous designs result, including: increased force sensitivity with a consistently low condition number, increased rigidity, and improved design flexibility. In addition, a design methodology is presented that uses optimization theory in combination with finite element analysis, to yield the best possible frame/truss force sensor design for a given set of specified principal forces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.