Abstract

BackgroundHypophosphatasia (HPP) is a rare hereditary disorder characterized by defective bone and tooth mineralization caused by mutations in the alkaline phosphatase (ALPL) gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). Here we performed clinical and molecular studies on 5 HPP children to investigate the pathogenic mechanisms of the ALPL gene variants.MethodsClinical and genetic analyses were performed on 5 HPP children, and the loci where ALPL variants were identified. Plasmids containing the relevant loci were constructed. The molecular and cellular mechanisms of the pathogenic ALPL variants were investigated by cellular immunofluorescence, enzyme activity assay, and protein expression assay.ResultsA total of 6 ALPL variants were identified in 5 HPP children: proband 1: c.346G>A (p.A116T); proband 2: c.346G>A (p.A116T)/deletions from c.1097 to c.1099 CCT (p.T366_S367deli) compound heterozygous variant; proband 3: insertion of G from c.1014 to c.1015 (p.H338fs)/c.1446C>A (p.H482Q) compound heterozygous variant; proband 4: c.920C>T (p.P307L); and proband 5: c.883A>G (p.M295V). Twenty-four hours after the HEK-293T was transfected with different variant plasmids, its alkaline phosphatase activity and enzyme protein content were reduced compared with the wild type, and there were differences among different variants. Except for 1014-G-1015+C1446A, the degree of reduction in enzyme activity was negatively correlated with the severity of clinical manifestations. Immunofluorescence revealed that the variants (especially c.883A>G and c.920C>T) caused a decrease in alkaline phosphatase expression in the cellular membrane.ConclusionsIn total, 3 novel variants were identified in these 5 HPP children, the discovery of which will enrich the human ALPL gene mutation database. Different variants in the ALPL gene can downregulate the activity of TNSALP enzyme (and thus affect its function) by affecting protein expression and translational modifications. The same variant may cause clinical manifestations of different severities in different individuals due to the presence of dominant negative effects, alterations in noncoding sequences, blind area of intron regulatory region sequencing, and variations in environmental and individual factors. The molecular mechanisms via which the ALPL gene exerts its expression effect in vivo are highly variable and warrant further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call