Abstract
Sivelestat sodium hydrate (sivelestat) is a specific neutrophil elastase inhibitor that is effective in treating acute lung injury associated with systemic inflammatory response syndrome. As such, it may be useful in treating hepatic ischemia-reperfusion injury (IRI), a condition in which neutrophils transmigrate into the interstitium, leading to release of neutrophil elastase from neutrophils and consequent damage to the affected tissue, particularly in cases of hepatic failure after liver transplantation or massive liver resection. The purpose of this study was to examine whether treatment with sivelestat inhibits neutrophil adhesion and migration to the vessel wall and suppresses hepatic IRI. Whether and, if so, the extent to which sivelestat suppresses the adhesion and migration of neutrophils and reduces liver damage in hepatic IRI was examined in a human umbilical vein endothelial cell (HUVEC) model and a rat hepatic IRI model. In the HUVEC model, the extent of the adhesion and migration of neutrophils stimulated by platelet-activating factor were found to be dose-dependently inhibited by sivelestat treatment (p < 0.05). In the rat model, serum liver enzyme levels were significantly lower at 12 h after reperfusion, and the number of neutrophils that had migrated to extravascular sites was significantly less in the treatment group compared to the control group (p < 0.05). Sivelestat inhibits the adhesion and migration of neutrophils to vascular endothelium in hepatic IRI, thereby suppressing liver injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.