Abstract

Neutrophil is a major focus in efforts to ameliorate the systemic inflammatory response associated with cardiopulmonary bypass. Neutrophil elastase is a powerful proteolytic enzyme, and plays a pivotal role in the development of the inflammatory response. This study assesses the inhibitory effects of sivelestat, a highly specific neutrophil elastase inhibitor, on elastase levels, cytokine production, and the functional changes of neutrophils in a simulated extracorporeal circulation model. Simulated recirculation was established by recirculating heparinized (3.75 U/mL) human blood for 120 minutes in an oxygenator and a roller pump circuit with and without 100 micromol/L of sivelestat (n = 7 for each group). Neutrophil elastase and interleukin-8 were measured with an enzyme immunoassay. Neutrophil deformability was evaluated by simulated microcapillaries. The neutrophil F-actin and the expression of CD11b and L-selectin were measured by flow cytometry. Sivelestat reduced both neutrophil elastase levels (p = 0.0006) and interleukin-8 production (p < 0.0001) at 120 minutes of recirculation. Sivelestat also significantly preserved neutrophil deformability (p = 0.017) and reduced F-actin expression (p = 0.0037). The drug did not modulate the changes of CD11b or L-selectin. This study suggests that specific elastase inhibition with sivelestat could be a feasible therapeutic strategy for patients undergoing cardiopulmonary bypass to attenuate neutrophil-derived inflammatory response and organ injuries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call