Abstract

The cardioprotective role of sivelestat, a neutrophil elastase inhibitor, has already been demonstrated, but the underlying molecular mechanism remains unclear. This study aimed to explore the mechanism underlying the role of sivelestat in sepsis-induced myocardial dysfunction (SIMD). We found that sivelestat treatment remarkably improved the viability and suppressed the apoptosis of lipopolysaccharide (LPS)-stimulated H9c2 cells. In vivo, sivelestat treatment was associated with an improved survival rate; reduced serum cTnT, TNF-α, IL-1β levels and myocardial TNF-α and IL-1β levels; ameliorated cardiac function and structure; and reduced cardiomyocyte apoptosis. Moreover, sivelestat treatment substantially increased Bcl-2 expression and suppressed caspase-3 and Bax expression in LPS-induced H9c2 cells and in the heart tissues of septic rats. Furthermore, the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) signaling pathway was activated both in vitro and in vivo. The protective effect of sivelestat against SIMD was reversed by the PI3K inhibitor LY294002. In summary, sivelestat can protect against SIMD by activating the PI3K/AKT/mTOR signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.