Abstract

With the rapid development of the air transportation industry, the air traffic situation is becoming more and more complicated. Determining the situation of air traffic is of great significance to ensure the safety and smoothness of air traffic. The strong subjectivity of assessment criteria, inaccurate assessment results and weak systemic assessment method are the main problems in air traffic situation assessment research. The aim of our research is to present an objective and accurate situation assessment method for air traffic systems. The paper presents a model to assess air traffic situation based on the complex network theory and ensemble learning. The air traffic weighted network model was introduced to systematically describe the real state of an air traffic system. Assessment criteria based on the complex network analysis method can systematically reflect the operational state of an air traffic weighted network system. We transformed the air traffic situation assessment into a binary classification, which makes situation assessment objective and accurate. Ensemble learning was introduced to improve the classification accuracy, which further improves the accuracy of the situation assessment model. The model was trained and tested on the dataset of the East China air traffic weighted network in 2019. Its average classification accuracy is 0.98. The recall and precision rates both exceed 0.95. Experiments have confirmed that the situation assessment model can accurately output air traffic situation value and situation level. Furthermore, the assessment results are consistent with the real operational situation of the air traffic in East China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.