Abstract
We construct a monoidal category of open transition systems that generate material history as transitions unfold, which we call situated transition systems. The material history generated by a composite system is composed of the material history generated by each component. The construction is parameterized by a symmetric strict monoidal category, understood as a resource theory, from which material histories are drawn. We pay special attention to the case in which this category is compact closed. In particular, if we begin with a compact closed category of integers then the resulting situated transition systems can be understood as systems of double-entry bookkeeping accounts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.