Abstract

We present a model of how counting is learned based on the ability to perform a series of specific steps. The steps require conceptual knowledge of three components: numerosity as a property of collections; numerals; and one-to-one mappings between numerals and collections. We argue that establishing one-to-one mappings is the central feature of counting. In the literature, the so-called cardinality principle has been in focus when studying the development of counting. We submit that identifying the procedural ability to count with the cardinality principle is not sufficient, but only one of the several steps in the counting process. Moreover, we suggest that some of these steps may be facilitated by the external organization of the counting situation. Using the methods of situated cognition, we analyze how the balance between external and internal representations will imply different loads on the working memory and attention of the counting individual. This analysis will show that even if the counter can competently use the cardinality principle, counting will vary in difficulty depending on the physical properties of the elements of collection and on their special arrangement. The upshot is that situated factors will influence counting performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.