Abstract

In pure N=1 supersymmetric Yang-Mills with gauge group SU(N), the domain walls which separate the N vacua have been argued, on the basis of string theory realizations, to be D-branes for the confining string. In a certain limit, this means that a configuration of k parallel domain walls is described by a 2+1-dimensional U(k) gauge theory. This theory has been identified by Acharya and Vafa as the U(k) gauge theory with 4 supercharges broken by a Chern-Simons term of level N in such a way that 2 supercharges are preserved. We argue further that the gauge coupling of the domain wall gauge theory goes like g^2 ~ Lambda/N, for large N. In the case of two domain walls, we show that the U(2) world-volume theory generates a quadratic potential on the Coulomb branch at two loops in perturbation theory which is consistent with there being a supersymmetric bound state of the two wall system. A mass gap of order Lambda/N is generated around the supersymmetric minimum and we estimate the size of the bound-state to be order Lambda/ \sqrt N. At large distance the potential reaches a constant that can qualitatively account for the binding energy of the two walls even though stringy effects are not, strictly speaking, decoupled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.