Abstract

High-resolution NMR spectroscopy is sensitive to local structural variations and subtle dynamics of biomolecules and is an important technique for studying the structures, dynamics, and interactions of these molecules. Small-molecule probes, including paramagnetic tags, have been developed for this purpose. Paramagnetic effects manifested in magnetic resonance spectra have long been recognized as valuable tools for chemical analysis of small molecules, and these effects were later applied in the fields of chemical biology and structural biology. However, such applications require the installation of a paramagnetic center in the biomolecules of interest. Paramagnetic metal ions and stable free radicals are the most widely used paramagnetic probes for biological magnetic resonance spectroscopy, and therefore mild, high-yielding approaches for chemically attaching paramagnetic tags to biomolecules are in high demand. In this Account, we begin by discussing paramagnetic species, especially transition metal ions and lanthanide ions, that are suitable for NMR and EPR studies, particularly for in-cell applications. Thereafter, we describe approaches for site-specific tagging of proteins with paramagnetic ions and discuss considerations involved in designing high-quality paramagnetic tags, including the strength of the binding between the metal-chelating moiety and the paramagnetic ion, the chemical stability, and the flexibility of the tether between the paramagnetic tag and the target protein. The flexibility of a tag correlates strongly with the averaging of paramagnetic effects observed in NMR spectra, and we describe methods for increasing tag rigidity and applications of such tags in biological systems. We also describe specific applications of established site-specific tagging approaches and newly developed paramagnetic tags for the elucidation of protein structures and dynamics at atomic resolution both in solution and in cells. First, we describe the determination of the 3D structure of a short-lived, low-abundance enzyme intermediate complex in real time by using pseudocontact shifts as structural restraints. Second, we demonstrate the utility of stable paramagnetic tags for determining 3D structures of proteins in live cells, and pseudocontact shifts are shown to be valuable structural restraints for in-cell protein analysis. Third, we show that a NMR optimized paramagnetic tag allows one to determine distance restraints on proteins by double electron-electron resonance (DEER) measurements with high spatial resolution both in vitro and in cells. Finally, we summarize recent advances in site-specific tagging of proteins to achieve atomic-resolution information about structural changes of proteins, and the advantages and challenges of magnetic resonance spectroscopy in biological systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call