Abstract

We compared the transcriptomes of parenchymal and vascular cells of Sedum alfredii stem under Cd stress to reveal gene regulatory networks underlying Cd hyperaccumulation. Cadmium (Cd) hyperaccumulation in plants is a complex biological process controlled by gene regulatory networks. Efficient transport through vascular systems and storage by parenchymal cells are vital for Cd hyperaccumulation in the Cd hyperaccumulator Sedum alfredii, but the genes involved are poorly understood. We investigated the spatial gene expression profiles of transport and storage sites in S. alfredii stem using laser-capture microdissection coupled with RNA sequencing. Gene expression patterns in response to Cd were distinct in vascular and parenchymal cells, indicating functional divisions that corresponded to Cd transportation and storage, respectively. In vascular cells, plasma membrane-related terms enriched a large number of differentially-expressed genes (DEGs) for foundational roles in Cd transportation. Parenchymal cells contained considerable DEGs specifically concentrated on vacuole-related terms associated with Cd sequestration and detoxification. In both cell types, DEGs were classified into different metabolic pathways in a similar way, indicating the role of Cd in activating a systemic stress signalling network where ATP-binding cassette transporters and Ca2+ signal pathways were probably involved. This study identified site-specific regulation of transcriptional responses to Cd stress in S. alfredii and analysed a collection of genes that possibly function in Cd transportation and detoxification, thus providing systemic information and direction for further investigation of Cd hyperaccumulation molecular mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.