Abstract

AbstractIn an analog weather-forecasting procedure, recorded weather in the past analogs corresponding to the current weather situation is used to predict future weather. Consistent with the procedure, a theoretical framework is developed to predict weather at a specific site in the Pir Panjal range of the northwest Himalaya, India, using surface weather observations of the past ten winters (1991/92 to 2001/02) 3 days in advance. Weather predictions were made as snow day with quantitative snowfall category or no-snow day, for day1 through day3. As currently deployed, the procedure routinely provides a 3 day point weather forecast as guidance information to a weather and avalanche forecaster. Forecasts by analog model are evaluated by the various accuracy measures achieved for an independent dataset of three winters (2002/03 to 2004/05). The results indicate that weather forecasts by analog model are quite reliable, in that forecast accuracy corresponds closely to the relative frequencies of observed weather events. Moreover, qualitative weather (snow day or no-snow day) and quantitative categorical snowfall forecasts (quantitative snowfall category for snow day) are better than reference forecasts based on persistence and climatology for day1 predictions. Site-specific snowfall forecast guidance may play a major role in assessing avalanche danger, and accordingly formulating an avalanche forecast for a given area in advance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call