Abstract

Three ligand binding sites on glycogen phosphorylase b which were originally described by kinetic and physicochemical means, and more recently located and defined in molecular terms by X-ray crystallography, have been probed by ligands specific for each site. Kinetic analyses, supplemented by X-ray crystallographic binding studies, permit assignment of each ligand to a primary binding site, as well as determination of its dissociation constant and interaction with ligands binding to the other sites. 8-Anilino-1-naphthalenesulfonate binds most strongly to the activator site, in competition with adenosine 5'-phosphate, presumably because its sulfonate group interacts with several arginine residues, and binds only weakly to the hydrophobic inhibitor site, possibly because of charge repulsion. It is itself a weak activator and decreases binding affinities for compounds specific for the inhibitor site. Our results with 8-anilino-1-naphthalenesulfonate are not consistent with predictions of its expected behavior and suggest caution in the use of this reagent as an indicator of hydrophobicity. Our second major probe, caffeine, binds primarily to the inhibitor site, shows competitive inhibition with substrate binding to the catalytic site, and decreases the affinity for the activator at the activator site. The catalytic site was probed with two different types of ligand. Glucose, known to stabilize the inactive T conformation of the enzyme, competes with the substrate alpha-D-glucose 1-phosphate for the catalytic site and decreases the affinity of adenosine 5'-phosphate for the activator site. Glucose also improves the binding affinity of caffeine for the inhibitor site by 3-5-fold, both compounds synergistically stabilizing the inactive T conformation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.