Abstract

This article describes site-selective sulfurization of Pd nanocubes capped by a monolayer of chemisorbed Br− ions. High-resolution transmission electron microscopy and high-angle annular dark-field scanning TEM observations showed that PdS was not formed until a certain quantity of polysulfide () ions had been introduced (300 μl, or 18.8 ppm in the final reaction solution). Spot energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy analyses confirmed that the surface-chemisorbed Br− ions were completely substituted by ions before the initiation of the sulfurization reaction. In the presence of sufficient ions (>300 μl or >18.8 ppm), PdS phase was selectively developed from the highly active corners, which then moved to the edges and finally towards the center until the entire nanocube was converted into PdS. The resultant PdS was found to be amorphous by electron microscopy and powder x-ray diffraction measurements. The amorphous structure of PdS facilitated the penetration and diffusion of species and thus acceleration of the reaction kinetics. As a result, the sulfurization of 13 nm Pd nanocubes was completed within a few minutes after the addition of adequate Na2Sx, leading to a much more severe poisoning effect, compared with other noble metals such as Ag, by sulfur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.