Abstract
The transition metal catalyzed hydrogenation of alkenes is a well-developed technology used on lab scale as well as on large scales in the chemical industry. Site- and chemoselective mono-hydrogenations of polarized conjugated dienes remain challenging. Instead, stoichiometric main-group hydrides are used rather than H2 . As part of an effort to develop a scalable route to prepare geranylacetone, we discovered that Rh(CO)2 acac/xantphos based catalysts enable the selective mono-hydrogenation of electron-poor 1,3-dienes, enones, and other polyunsaturated substrates. D-labeling and DFT studies support a mechanism where a nucleophilic RhI -hydride selectively adds to electron-poor alkenes and the resulting Rh-enolate undergoes subsequent inner-sphere protonation by alcohol solvent. The finding that (Ln )Rh(H)(CO) type catalysts can enable selective mono-hydrogenation of electron-poor 1,3-dienes provides a valuable tool in the design of related chemoselective hydrogenation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.