Abstract

Ricin toxin's B subunit (RTB) is a multifunctional galactose (Gal)-/N-acetylgalactosamine (GalNac)-specific lectin that promotes uptake and intracellular trafficking of ricin's ribosome-inactivating subunit (RTA) into mammalian cells. Structurally, RTB consists of two globular domains (RTB-D1, RTB-D2), each divided into three homologous sub-domains (α, β, γ). The two carbohydrate recognition domains (CRDs) are situated on opposite sides of RTB (sub-domains 1α and 2γ) and function non-cooperatively. Previous studies have revealed two distinct classes of toxin-neutralizing, anti-RTB monoclonal antibodies (mAbs). Type I mAbs, exemplified by SylH3, inhibit (~90%) toxin attachment to cell surfaces, while type II mAbs, epitomized by 24B11, interfere with intracellular toxin transport between the plasma membrane and the trans-Golgi network (TGN). Localizing the epitopes recognized by these two classes of mAbs has proven difficult, in part because of RTB's duplicative structure. To circumvent this problem, RTB-D1 and RTB-D2 were expressed as pIII fusion proteins on the surface of filamentous phage M13 and subsequently used as "bait" in mAb capture assays. We found that SylH3 captured RTB-D1 (but not RTB-D2) in a dose-dependent manner, while 24B11 captured RTB-D2 (but not RTB-D1) in a dose-dependent manner. We confirmed these domain assignments by competition studies with an additional 8 RTB-specific mAbs along with a dozen a single chain antibodies (VHHs). Collectively, these results demonstrate that type I and type II mAbs segregate on the basis of domain specificity and suggest that RTB's two domains may contribute to distinct steps in the intoxication pathway.

Highlights

  • The plant toxin, ricin, is classified by military and public health officials as a biothreat agent because of its extreme potency following inhalation, coupled with the ease by which the toxin can be procured from castor beans (Ricinus communis) [1]

  • The relative epitope locations of the 10 Ricin toxin’s B subunit (RTB)-specific toxin-neutralizing and non-neutralizing monoclonal antibodies (mAbs) in our collection are not known, because the collection as a whole has never been subject to cross-competition assays

  • We performed competitive sandwich ELISAs in which capture mAbs were immobilized on microtiter plates and probed with biotinylated ricin in the presence of molar excess competitor mAb (Table 1; Fig 2A)

Read more

Summary

Introduction

The plant toxin, ricin, is classified by military and public health officials as a biothreat agent because of its extreme potency following inhalation, coupled with the ease by which the toxin can be procured from castor beans (Ricinus communis) [1]. Ricin’s A and B subunits each contribute to toxicity. The A subunit (RTA) is a ribosome-inactivating protein (RIP) that functions by depurination of a conserved adenine residue within the sarcin-ricin loop (SRL) of 28S rRNA [2, 3]. The B subunit (RTB) is a galactose (Gal)- and N-acetylgalactosamine (GalNAc)-. Revised B cell epitope map of RTB

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call