Abstract
Fluorescence, absorbance and photoacoustic methods were used to examine in vivo various functional aspects of the photochemical apparatus of maize leaves exposed to different Cu concentrations. The primary photochemistry of a dark adapted leaf was less affected in the presence of Cu, while in a light-adapted leaf the photochemical events were severely impaired by Cu. Analysis of the characteristics of chlorophyll fluorescence induction revealed that the primary target of Cu stress involved the PSII reaction centre in its ability to adapt to high light conditions. Denaturation of PSII occured at 80 µM Cu resulting in a significant loss of PSII-mediated electron transport under continuous light and a strong inhibition of O2 evolution. It was also observed that PSI photochemistry, as probed by the photochemical energy storage in far-red light and the kinetics of P700 photooxidation by strong far- red light, was more tolerant to Cu compared to the PSII activity. Moreover, in Cu-exposed leaves irradiated with high intensity light, the in vivo heat emission yield increased due to the Cu deactivation of photosynthetic energy conservation. Heat release was well correlated with changes in non- photochemical quenching. Copper gradually prevents the adaptation process from a dark-adapted to a light-adapted state with the consequence that all observed photosynthetic activity criteria under steady state conditions in the light become more inefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.