Abstract

Absorption and translocation of labeled Fe were measured at various locations along the length of intact seminal axes and lateral roots of iron-sufficient (+Fe) and iron-stressed (-Fe) barley (Hordeum vulgare) plants. In seminal axes of +Fe plants, rates of translocation were very much higher in a zone 1 to 4 cm from the root tip than elsewhere in the root. Lateral roots of high rates of translocation were also restricted to a narrow band of maturing or recently matured cells. In -Fe plants the patterns of uptake and translocation were essentially the same as in +Fe plants but the rates were 7- to 10-fold higher. The amount of labeled Fe bound to the root itself was not increased by Fe stress and its distribution along the root seemed inversely related to the ability to translocate Fe.Microautoradiographic studies showed that most of the iron bound to roots was held in an extracellular peripheral band in which iron seemed to be precipitated. This process may be assisted by microbial colonies but did not depend on them since it was seen, although to a lesser extent, in sterile roots. In zones from which iron was translocated there was evidence that internal root tissues became labeled readily, but as translocation declined with distance from the root tip, radial penetration of Fe appeared to become progressively less. The results are discussed in relation to possible changes in the pH or redox potential of the surface of the root.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.